Paramagnetic fluorinated nanoemulsions for sensitive cellular fluorine-19 magnetic resonance imaging
نویسندگان
چکیده
Fluorine-19 magnetic resonance imaging ((19)F MRI) probes enable quantitative in vivo detection of cell therapies and inflammatory cells. Here, we describe the formulation of perfluorocarbon-based nanoemulsions with improved sensitivity for cellular MRI. Reduction of the (19)F spin-lattice relaxation time (T1) enables rapid imaging and an improved signal-to-noise ratio, thereby improving cell detection sensitivity. We synthesized metal-binding β-diketones conjugated to linear perfluoropolyether (PFPE), formulated these fluorinated ligands as aqueous nanoemulsions, and then metallated them with various transition and lanthanide ions in the fluorous phase. Iron(III) tris-β-diketonate ('FETRIS') nanoemulsions with PFPE have low cytotoxicity (<20%) and superior MRI properties. Moreover, the (19)F T1 can readily be reduced by an order of magnitude and tuned by stoichiometric modulation of the iron concentration. The resulting (19)F MRI detection sensitivity is enhanced by three- to fivefold over previously used tracers at 11.7 T, and is predicted to increase by at least eightfold at the clinical field strength of 3 T.
منابع مشابه
The Assessment of Toxicity Characteristics of Cellular Uptake of Paramagnetic Nanoparticles as a New Magnetic Resonance Imaging Contrast Agent
Nanoparticles are unique that enable many promising medical and technological applications intheir physical, and chemical properties. It is widely accepted that nanoparticles should bethoroughly tested for health nanotoxicity, but a moderate risk analysis is currently prevented by arevealing absence of mechanistic knowledge of nanoparticle toxicity. The purpose of this study<b...
متن کاملThe Assessment of Toxicity Characteristics of Cellular Uptake of Paramagnetic Nanoparticles as a New Magnetic Resonance Imaging Contrast Agent
Nanoparticles are unique that enable many promising medical and technological applications intheir physical, and chemical properties. It is widely accepted that nanoparticles should bethoroughly tested for health nanotoxicity, but a moderate risk analysis is currently prevented by arevealing absence of mechanistic knowledge of nanoparticle toxicity. The purpose of this study<b...
متن کاملGold nanoparticles protected by fluorinated ligands for 19F MRI.
Gold nanoparticles coated with fluorinated ligands (F-MPCs) present features suitable for (19)F MRI as observed from phantom experiments. Cellular uptake, by HeLa cells, and toxicity of fluorescent dye-decorated F-MPCs are presented together with their ability to bind hydrophobic molecules allowing for a potential combination of targeting, delivery and imaging features.
متن کاملCell Labeling for 19F MRI: New and Improved Approach to Perfluorocarbon Nanoemulsion Design
This report describes novel perfluorocarbon (PFC) nanoemulsions designed to improve ex vivo cell labeling for 19F magnetic resonance imaging (MRI). 19F MRI is a powerful non-invasive technique for monitoring cells of the immune system in vivo, where cells are labeled ex vivo with PFC nanoemulsions in cell culture. The quality of 19F MRI is directly affected by the quality of ex vivo PFC cell la...
متن کاملFe- and Ln-DOTAm-F12 Are Effective Paramagnetic Fluorine Contrast Agents for MRI in Water and Blood.
A series of fluorinated macrocyclic complexes, M-DOTAm-F12, where M is LaIII, EuIII, GdIII, TbIII, DyIII, HoIII, ErIII, TmIII, YbIII, and FeII, was synthesized, and their potential as fluorine magnetic resonance imaging (MRI) contrast agents was evaluated. The high water solubility of these complexes and the presence of a single fluorine NMR signal, two necessary parameters for in vivo MRI, are...
متن کامل